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A turbulence representation, consisting of a generalized set of transport equa- 
tions for the Reynolds stress tensor and the turbulence energy decay rate, is 
applied to the study of convective heat transport between parallel plates at  
moderate Rayleigh numbers, 5 x lo3 6 Ra 6 6.4 x lo5. A series of heat flux 
transitions, in good agreement with those observed experimentally, is detect,ed 
in this study and found to correlate with changes in the turbulence structure. 
In  the order of increasing Rayleigh number these structural changes correspond 
to: the transition from laminar to turbulent flow, the transition from low to 
locally high intensity turbulence, the transition to uniformly high intensity 
turbulence, and the transition from a buoyancy dominated turbulence to a shear 
dominated turbulence. An analysis is made of the effect of each of these transi- 
tions on the mechanism for heat transfer between the plates. 

1. Introduction 
When a fluid is confined between infinite parallel plates and heated from 

below, various forces may contribute to the heat transfer between the plates. 
Heat conduction provides the sole mechanism for small values of the buoyancy 
driving force (measured by the Rayleigh number Ra).  For increasing values of Ra 
the heat transfer is influenced by the effects of two-dimensional fluid motions, 
three-dimensional motions and turbulent fluctuations. Transitions in heat flux 
are noted a t  the onset of each of these fluid motions, and additional transitions 
are observed to occur after the fluid becomes turbulent. 

The heat flux transitions in the turbulent regime were f i s t  measured by 
Malkus (1954) in experiments with water and acetone. Since that time Willis & 
Deardorff (1967) and Krishnamurti (1970a, b )  have performed similar experi- 
ments using fluids with Prandtl number Pr ranging from 0.71 to 8500. These 
workers observed a series of transitions a t  Rayleigh numbers that were very 
similar to those of Malkus, although there were particular transitions that did 
not fit the overall pattern. Despite these discrepancies, the picture that emerges 
is one of strong correlation in transition Rayleigh numbers for a large variety of 
fluids, indicating an evolution in turbulence structure with Ra that is relatively 
independent of Pr. No explanation of this phenomenon has as yet gained wide 
acceptance. 

The purpose of the present study is to reproduce numerically the experi- 
mentally observed transitions, including the transition from laminar to turbulent 
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flow, and to relate these to the changes in turbulent structure. Calculations are 
performed for Rayleigh numbers in the range 5 x lo3 to 6.4 x lo5 at a Prandtl 
number, 0.7, characteristic of air. These calculations make use of a coupled 
mean flow, turbulence representation that permits the interchange of energy 
between large and small scales of fluid motion. Only two-dimensional spatial 
variations are considered, but the calculations do include the experimentally 
observed (Lipps & Somerville 1971; Willis, Deardorff & Somerville 1971) effect 
of increased wavelength of flow circulation with Ra.  

An auxiliary purpose of this study is to provide an additional test of a trans- 
port representation of turbulence that had previously been applied only to shear 
flow problems. I n  Daly & Harlow (1970) a generalized set of transport equations 
was proposed to represent transient, incompressible turbulent flow. Applications 
were made to the calculations of turbulence distortion in a contracting tunnel 
and to the calculation of turbulent channel flow. Using the same set of turbulence 
parameter values, both studies were in good agreement with experimentally 
measured turbulence details. Except for those additional parameters needed 
to describe the effects of buoyancy (plus one additional term described below) the 
representation used here is identical to that of the earlier studies. 

2. Limitations of the numerical approach 
2.1. Previous investigations 

There have been many numerical studies of laminar Bknard convection. With 
few exceptions (Chorin 1966, 1968; Lipps & Somerville 1971) these have been 
limited to two-dimensional motions and, in most cases, to circulations of wave- 
length approximately twice the plate separation distance h. These studies are 
generally in good agreement among themselves, but predict a heat flux between 
the plates that is greater than that measured experimentally. Recent evidence 
(Lipps & Somerville 197 1 ; Willis et al. 197 1) indicates that  this discrepancy is a 
direct consequence of the two-dimensional and wavelength constraints imposed 
by the numerical solution. Willis et al. observe an increase of wavelength with Ra,  
the rate of increase depending on Ra,  Pr ,  initial conditions, the method of taking 
measurements and three-dimensional interactions. 

Some two-dimensional numerical studies have employed finite-difference 
meshes of large lateral extent in order to allow the circulation to evolve to a 
preferred size. Deardorff & Willis (1965) used a grid of width eight times its 
height and Lipps & Somerville (1971) used grids of aspect ratio six and eighteen. 
I n  none of these cases did they observe a wavelength increase, and in some 
instances the calculated wavelength was considerably less than 2*0h, which is 
approximately the observed wavelength a t  the onset of convection. However, 
when Lipps & Somerville extended their study to three-dimensional calcula- 
tions, this trend was reversed. I n  calculations appropriate to air a t  Ra = 4000 
and to water a t  Ra = 8000 they measured wavelengths of 3-0 and 2.8h, respec- 
tively. While these values are slightly larger than those observed experimentally 
(2.8 and 2.3h), they do provide a strong indication that three dimensions are 
necessary for accurate numerical calculations of roll wavelength. 
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There appears to be ample evidence to indicate that the discrepancy between 
numerical and experimental wavelengths leads to the discrepancy in heat flux 
observations. Thus Willis et ul. (197 1) have found that, when the two-dimensional 
calculation wavelength is forced to correspond to experimental values for air, 
good heat flux correlation is obtained. Similar good agreement with experiment 
was obtained in two-dimensional calculations by Lipps & Somerville (1971) for 
Pr = 200, by forcing the wavelength to correspond to that measured by Rossby 
(1966). These results indicate that the neglect of three dimensionality in 
numerical calculations is not necessarily a crucial restriction if one is careful to 
preserve the experimentally observed variation of circulation wavelength 
with Ra. 

2.2. T h e  present study 

The calculations presented in this paper are, like most of those mentioned above, 
restricted to the consideration of a single, infinitely long, two-dimensional roll. 
The lateral boundaries of the calculation mesh are lines of symmetry, so that the 
single roll has identical neighbours of opposite circulation. These calculations 
include the effect of the increased circulation wavelength that occurs with Ra 
and that was found to  be extremely important in obtaining good correlation 
between numerical and experimental heat flux measurements. 

This investigation differs from most of the previous ones in that it extends to 
Ra values for which the flow is observed to be turbulent. Solutions are obtained 
by coupling the Navier-Stokes and heat equation with a system of transport 
equations for transient anisotropic three-dimensional turbulence. From initial 
conditions these coupled equations are then integrated through time to steady 
state. The steady-state results are independent of initial conditions and, for 
fixed boundary conditions and Prandtl number, depend only upon the Rayleigh 
number. 

This model of the flow represents a considerable idealization of three-dimen- 
sional convective flow. For the values of Ra under consideration here, the rolls 
display numerous bends, variations in shape and occasional terminations. 
Furthermore, they are not fixed in space but slowly migrate throughout the 
region between the plates, so that there is no steady state. Therefore, the useful- 
ness of the numerical study, which ultimately must be demonstrated, can only 
be attributable to the fact that the gross properties of the flow are not strongly 
affected by the three-dimensional and time-varying nature of the fluid motion. 
Indeed, in the laminar regime it was found that the neglect of these effects was 
not critical as long as one was careful to force the circulation wavelength to 
correspond to that observed experimentally ( § 2.2). Even a t  the higher Ra con- 
sidered here, it seems reasonable that the gross dynamics of the flow will be 
determined by the vertical motions of the fluid and be less influenced by the 
lateral oscillations and migrations of the flow. Therefore the neglect of these 
three-dimensional effects should not obscure the changes in turbulent structure 
that this study examines. 



3. The equations 
3.1. Distinction between mean flow and turbulence 

The significance of the turbulence transport equations can be considered in a 
context that  is independent of the numerical or analytical approximations used 
for obtaining solutions. For any time-varying fluid flow in arbitrary geometry, 
the coupled turbulence and mean flow equations describe the dynamical evolu- 
tion from given initial conditions, subject to prescribed boundary conditions. 
Relatively few parameters enter into these specifications, many fewer than the 
detailed degrees of freedom could conceivably allow. These parameters are of 
two types, the ‘universal ’ parameters occurring in the turbulence transport and 
mean flow equations, and the quantities that specify the initial and boundary 
conditions. 

It is a remarkable fact that  complex turbulent flows can be accurately 
described with such a paucity of specifications. There is no need to describe the 
precise initial state of the velocity field a t  every point, only a small number of 
low order moments are required. An analogous situation arises in gas dynamics. 
There, the specifications can be given with sufficient precision in terms of a small 
number of low order moments, without requiring the initial conditions for every 
molecule. 

The key to understanding this requirement for minimum specification lies in 
the existence of a distribution function whose form tends so strongly toward 
equilibrium that no specification of details is required. For molecular dynamics 
we refer to the Maxwell-Boltzmann distribution, from which slight deviations 
can be described by means of the small number of parameters that are con- 
tained in the Chapman-Enskog theory. For turbulence, this function is not 
yet known, especially for circumstances that induce slight deviations from 
equilibrium. 

Just  as the Navier-Stokes equations can be postulated on the basis of invari- 
ance principles, so also can the turbulence transport equations. The precise 
knowledge of the structure of the distribution function is not required. Applica- 
tion of the equations to a specific problem automatically accounts for the distinc- 
tion between mean flow and fluctuations, without requiring, or even allowing 
for, a precise description of the split. I n  particular, it is not necessary to introduce 
such artificial entities as ‘short time, local averaging’ or ‘averaging over a 
volume small compared with the mean flow structure’. While these may be 
useful for heuristic purposes, the general spirit of Liouville theory shows that 
they are never necessary. 

Thus the conclusion is that whenever the turbulence transport equations are 
successful in describing real flow processes, it is because there exists a nearly 
universal subsection of the entire distribution function to which the turbulence 
equations apply, the rest being related to the mean flow equations. It remains 
as a significant research project to determine this universal part, just as it 
remained, after Stokes’s stress tensor postulates, for later investigators to derive 
the Chapman-Enskog distribution functions for molecular dynamics. 
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3.2. The turbulence representation 

The turbulence representation employed in this study is identical to that 
described by Daly & Harlow (1970), except for one addition to the pressure- 
velocity correlation term. This representation consists of transport equations 
for the Reynolds stress tensor, Rij = ui.u;, and the contracted energy decay 
tensor, D = Dii = &(au;/i3x,)2. These equations have been derived from the 
fluctuat'ing Navier-Stokes equations for a viscous, incompressible fluid, with 
approximations for the higher order moments that arise in that derivation. 
Rather than repeating the details of those approximations, we refer the reader to 
the earlier paper and present only the final transformed equations. I n  summation 
convention form these are written: 

- 

(where the equations have been made dimensionless by the distance and tem- 
perature difference between the plates h and 6T ,  and by the thermal diffusivity 
K ) ,  for mean velocity uk, turbulence energy q = iR,,, scale of the energy carrying 
eddies s = (Aq/D)j,  fluctuating pressure-velocity gradient correlation, with zero 
contraction (detailed below) mean temperature T, Prandtl number Pr = V / K  

(molecular kinematic viscosity Y ) ,  Rayleigh number Ra = (,8gh3ST)/(~v), volu- 
metric coefficient of expansion ,8, gravitational acceleration magnitude g. 

0 for i = 1,2, 

1 for i = 3. 
ti = { 

In  addition, there are a number of coefficients, some fixed constants and others 
that are functions of the turbulence Reynolds number [ = s(2q)*/v. The constants, 
all of which appear in the Rii equation, are: the coefficient of the turbulent 
diffusion term a, the coefficient of the conservative pressure-velocity correlation 
6, the coefficient of the buoyancy creation term r .  The terms that are functions 
of ( are: the coefficient of the Rij decay term, also used in the definition of s and 
in moment approximations A(( ) ,  the coefficient of the D decay term A'([), the 
coefficient of the D shear creation term g((), the coefficient of the D buoyancy 
creation term f((). 

The pressure-velocity correlation term Qij has vanishing contraction. I ts  
effect therefore is limited to non-isotropic turbulence, in which it contributes to 
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a redistribution of energy among the component’s and to variations of the shear 
stress magnitude. It has the form 

where 

and wo, w l ,  p, Sand !2 are constants. Thew term, which tends to produceisotropy, 
was originally proposed by Rotta (1951). The ,u term, derived independently by 
Crow (1968) and Harlow & Hirt (i969),  relates pressure-velocity correlations to 
mean flow shear in a manner that tends to counteract the shear creation terms 
in (1) .  The next two terms in (3) were also derived by Harlow & Hirt (1969). The 
first of these represents the effect of temperature fluctuations in producing 
fluctuations in pressure, while the second is a wall effect term that accounts for 
the transfer of energy from the normal to the transverse directions in the vicinity 
of rigid walls. The tensor Pi. provides the angular relationships between the 
directions i and j and the normal to the wall, as well as a weighting that falls off 
rapidly with distance from the wall (Daly & Harlow 1970, (20)-(22)).  

The final term in (3) is the sole addition to the turbulence theory presented 
here. It includes terms proportional to the shear creation terms of (i) as well as 
other shear terms that do not arise in the derivation of (1).  It permits the exchange 
of energy among components in a way that amounts to additional shear crea.tion 
terms for some components and sinks for others. I n  this capacity it can be an 
extremely important contributor in non-isotropic flows involving large mean 
flow shears. This term is not original in the present turbulence representation, 
but was proposed by Chou (1945a, b )  and Rotta (1951), who showed that it could 
be obtained from the pressure-velocity derivative correlation. 

Equation (i) permits all possible forms for the decay term between the 
extremes of ‘local isotropy’ and proportionality to Reynolds stress. To see this, 
consider the following two terms from that equation : 

-- w P r A  (R,ij-QRkk6,ij) --R,ij. 2 P r A  
S2 S2 

Written in this form the decay term appears proportional to Reynolds stress, 
but by a rearrangement of terms it can also be written as 

in which form the decay is isotropic. Thus, a variation of the relative amounts 
of the two forms of decay can be accomplished through changes in the 
coefficient , w . 
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= O  (T(x ,O)=++, T ( x , ~ ) = - & ) ,  

a [ (i, z ) ]  = Rij(x,O) = Rij(x,  I )  = 0 (ij = 11,22,33),  
a - [R,j(O, z ) ]  = - Rij 
ax ax 

3.3. The mean$ow 

The mean flow equations for an incompressible fluid, with the Boussinesq 
approximation, can be written as follows: 

) ( 7 )  

_ -  - 0, 
auk (4) 

for t,he pressure divided by constant density q5, and constant reference tem- 
perature To. Also r, the coefficient of turbulent diffusion of T ,  is the same as the 
buoyancy creation coefficient in (I) .  

3.4. Application to the turbulent heat $ux problem 

The fluid is confined between two rigid, insulated, horizontal plates located a t  
z = 0, 1 and maintained a t  temperatures, T = ++, -4: respectively. In  the 
x direction the motion is contained by planes of symmetry a t  x = 0 and x = E/h, 
so that the flow is periodic in x ,  with period 21/h. Computer limitations require 
that we restrict our attention to two-dimensional flows, and we therefore assume 
all quantities to be constant in y and take u, = 0. The constancy in y implies that 
(1) contains no creation terms for the components R,, and R23, so that these, if 
not initially zero, would rapidly decay to  zero. However, this is not true of the 
component R,,, which receives contributions from the intercomponent coupling 
terms, a,, and 

There is an additional symmetry that could be included in this problem 
formulation. It arises from the fact that  (1)-(6) are all symmetric about the 
midpoint of the domain, (1/2h, 4). By taking advantage of this fact, an identical 
solution could be obtained by solving the problem over one half the present 
region of interest. Instead, we used this symmetry requirement as a test on the 
accuracy of the numerical solution. 

The boundary conditions can be summarized as follows: 

I U, (O,  2 )  = u1 j- ,  z = U1(X ,  0) = UJX, 1 )  = 0, ( “ 1  

ax a [ 6 11 a 
ax 
-[[D(O,z)] =-  D - z = 0 (D+co as z + O , l ) .  I 
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As discussed by Daly & Harlow (1970), the last condition, strictly speaking, 
applies only in the laminar sublayer. Its implementation in a numerical study 
involves a certain amount of compromise, in view of the fact that the flow in the 
laminar sublayer usually is not well resolved. Good results were obtained in the 
study of channel-flow turbulence (Daly & Harlow 1970) through the use of a 
modified form of a result obtained by Harlow & Hirt (1969) appropriate in the 
near vicinity of the wall. In  terms of the value of D in the first calculational cell, 
D, = D(x,  @z), their result gives, for x < +8x, 

D = D, ( i ) n - 2 ~ n - 2 ,  

where n = 1.4372. The modification used in the channel flow study as well as 
the present one is to take n = 1.6 rather than 1.4372. 

3.5. Parameter values 

This study makes use of the same set of functional expressions and parameter 
values used by Daly & Harlow (1970), viz. 

wo = w, = a = 1.0, p = 0 = 0.0, 

10.0 (ij 4 331, 
= 0.14, I$(x , z )  = j r q 2  (ij = 33), 

In  addition, several new quantities are introduced. Their values are 

1.7 (5 2 5 ) ,  

1.0 (6 < 5 ) .  
T = 0.8, = 0.2, f(t) = 

In applications of this turbulence representation to the problems of turbulence 
distortion in a non-uniform tunnel (Harlow & Romero 1969) and to turbulent 
channel flow (Daly & Harlow 1970), considerable attention was given to the 
sensitivity of results to variations of the values of the parameters (9). Most of 
these findings apply equally well to the current study; the interested reader is 
referred to those references for details. The effect of varying the newly introduced 
parameter values (10) is considered in appendix B for a flow situation that pro- 
vides a severe test of the sensitivity to these parameters. These tests show that 
the numerical measurements are particularly sensitive to variations in T. This is 
not surprising, since 7 plays the double role of turbulent heat diffusion coefficient 
in (6) and turbulent buoyancy creation coefficient in (1) .  Thus, this coefficient 
controls the entire coupling between the turbulent flow and the driving 
mechanism. The effect of varyingf(c) is much less important, while changes in R 
have practically no effect on results. 

Of particular interest in this study is the representation of the transition from 
low to high intensity turbulence, because this transition is closely related to the 
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heat flux transitions to be discussed in $3 .6 .  The decay rate coefficients A ( ( )  and 
A‘( ( )  of the R, and D equations have a strong influence on the nature of the 
transition in turbulence regimes, so we briefly review here t,he basis for the 
formulation of these terms shown in (9). For isotropic turbulence it can be shown 
(Hinze 1959, p. 179) that  the dissipation of turbulence energy q can be written 
- 10vq/h2, where h is the turbulence dissipation scale. I n  our formulation this 
dissipation term is written - 2vAq/s2, where s is the scale of the energy carrying 
eddies. Thus 

5 A D  
(11) - = - = -  

h2 s2 q ’  

where the last comes from our definition of s, § 3.2. 
Consider the two extreme values for A ( ( )  given in (9).  For low intensity turbu- 

lence (( < 5 in our representation) dissipation occurs in eddies of size of the order 
of the energy carrying eddies (i.e. h = s), so that A = 5 from (11).  For high 
Reynolds numbers the Kolmogorov theory of turbulent microstructure asserts 
that the dissipation is approximately equal to  the work done by the energy 
carrying eddies (Hinze 1959, p. 185), i.e. 

I n  the present turbulence representation, this term is 

where 

- v ( z ) 2  = -7, 2vAq 

a t  high intensity. The constant of proportionality relating (12) and (13) has been 
chosen equal to unity, consistent with other assumptions of the form (13) that 
are used in the derivation of (1) and ( 2 ) .  

The formulation for A’(() in (9) is unchanged from that of Daly & Harlow 
(1970), but our interpretation of the origin of this term has been modified by 
Rodi (1971) and Lumley (1970). I n  particular, the latter showed that, for 
homogeneous turbulence, the decay term in ( 2 ) ,  - 2 Pr A’Dls2, represents the 
combined contribution of the two terms (see Daly & Harlow 1970, (14)) 

The first of these was modelled by Daly & Harlow (1970) as 

but this cannot be complete, since the right-hand side vanishes for homogeneous 
turbulence, whereas the left-hand side does not. Thus, following Lumley (1970)’ 
we now believe that there is an additional contribution to the right-hand side 
of (15) of the form 

- (constant) Pr AD/s2.  
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Combining this with a similar contribution from the second term in (14) gives 
the decay term in (2) : 

- 2 Pr A'Dls2. 

In  the case of high Reynolds number flow in grid turbulence, Lumley (1970) 
obtains a result that, written in our notation, gives A' = 2A. This agrees with 
our high Reynolds number value in (9).  

Results from Batchelor & Townsend's (1948) experimental studies of grid 
turbulence also support the expression for A'([) in (9). They measure the temporal 
variation of the turbulence dissipation scale during the initial (high intensity) 
state of decay, as well as in the final (low intensity) state, finding 

1Ov initial state, 

These measurements can be interpreted in terms of our formulation, using ( 1  1 ) .  
Thus 

For this decay problem the appropriate equations for q and D are 

aqpt = - ~ V D ,  a q a t  = - ~ V A ' D ~ .  (18) 

Using (18) in ( 17) gives 

Comparing this result with (16), one obtains initial and final state values of A' 
that are in exact agreement with the high and low intensity values of A', respec- 
tively, in (9).  

The expressions in (9) and (10) show a rapid transition from low to high 
intensity turbulent regimes; indeed, for A'([), g(<) and f([) the change is dis- 
continuous. Batchelor & Townsend (1948) did not report discontinuous changes 
in turbulence parameters, but, in the one experiment for which they did attain 
final period decay, the transition occurred quite rapidly. For this experiment 
their turbulence Reynolds number Re,, = u'h/v decreased from an initial value 
of 7-3 to 5.0 a t  the onset of final period decay, which occurred a t  approximately 
400 mesh widths downstream from the grid. The relationship between Re, and 
our turbulence Reynolds number [ is [ = 34 Re,, at low intensity. Our transition 
value 6 = 5 may therefore be somewhat low. On the other hand, a second experi- 
ment, for which Re, = 8-5 in the initial period, did not reach final period decay, 
even though Re, decreased to N 4. Indeed, as Batchelor & Townsend point out, 
a simple Reynolds number criterion is probably not correct. More information 
about low intensity turbulence is needed to determine this transition accurately. 

ahyat = i o v ( A p  - I ) .  

3.6. Numerical calculations 
Two series of numerical calculations were performed for 

5 x l o 3  < Ra < 6.4 x lo5, Pr = 0.7, 

to examine the effect of the wavelength of the large-scale motions on the turbu- 
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Ra 

FIGURE 1. Non-dimensional roll wavelength and corresponding finite-difference mesh width 
as functions of Rayleigh number. For Ra < 3 x lo4, wavelengths are obtained from experi- 
mental measurements of Willis et al. (1971). Extrapolation t o  higher Ra used data of 
Deardorff & Willis (1965, 1967). 

lence-mean flow coupling and the heat flux between the plates. I n  one series the 
calculation mesh was square, so that the wavelength of the large motions was 
twice the plate separation distance. I n  the second series the width of the mesh 
was varied, to represent the experimentally observed increase of roll wavelength 
with Ra, as indicated in figure 1.  

Figure 1 shows the experimentally observed non-dimensional wavelength as 
a function of Rayleigh number. The wavelength increases rapidly until 
Ra = 8 x lo3, where there is a transition to a slower rate of increase. The data 
for Ra < 3 x lo4 were obtained from an extensive series of experiments by 
Willis et al. (1971)) and are probably quite reliable. However, a t  higher Rayleigh 
numbers there are much less data available. There is a single wavelength 
measurement at Ra = 1-6 x 105 by Deardorff & Willis (1965)) and this datum 
point is somewhat questionable owing to the possibility of two-dimensional con- 
straints on the experimental apparatus. I n  addition, a rough wavelength esti- 
mate can be obtained from the spectra of fluctuating quantities a t  Ra = 6.3 x lo5 
provided by Deardorff & Willis (1967). Despite the lack of quantitativeinforma- 
tion for Ra > 3 x lo4, the wavelength variation indicated in figure 1 was used in 
the numerical calculations as a qualitative representation of this important 
physical phenomenon. 

Steady-state numerical solutions of (1)-(6) were obtained as limits of transient 
problems. At low Rayleigh numbers a laminar steady state was obtained first. 
Then a low intensity turbulence field was introduced, and the equations were 
integrat,ed through time to a new steady state, which would correspond to the 
laminar solution if the turbulence decayed away. However, once the Ra for 
transition to turbulence had been determined, the separate laminar flow solution 
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was often deleted at higher Rayleigh numbers, and a single turbulent solution 
was developed from initial conditions. The same steady-state solution was 
obtained under either procedure. 

Finite-difference solutions were obtained by applying the Simplified Marker 
and Cell technique (Amsden & Harlow 1970a, b)  for incompressible flow to (4) 
and ( 5 ) ,  coupled with space-centred differencing of ( l ) ,  (2) and (6) .  Calculations 
were made on the CDC 6600 and 7600 computers, with output processed on the 
Stromberg Carlson model 4020 microfilm recorder. The details of the numerical 
calculations are discussed in appendix A. 

4. Results 
4.1. Comparison of heat flux measurements using $xed and 

variable calculation meshes 

Figure 2 shows the variation of steady-state Nusselt number N u  (a dimensionless 
measure of heat flux), with Rayleigh number (as calculated in this study and 
measured by several experimenters). The dashed curve in the figure was drawn 
by the author from experimental measurements with water by Rossby (1966) 
and Silveston (1958). The triangles mark Nusselt, number measurements in air 
by Mull & Reiher (1930). The solid lines show the calculated results: the curve 
through squares gives the values of N u  obtained with a fixed, 30 x 30 cell, finite- 
difference mesh, while the curve through circles shows those calculated using a 
mesh of fixed height, 30 cells, and varying width. The width of t,he mesh increases 
with R a  as shown in figure 1.  The hollow circles show values of Nu measured in 
variable width calculations, in which the flow was constrained to be non- 
turbulent. 

The calculated Nu values in figure 2 are in good agreement with numerical 
results obtained under similar wavelength conditions by other investigators 
(Plows 1968; Willis et al. 1971) for R a  2 2 x lo4, the upper limit for most 
numerical studies. Willis et al. (1971) found that they could obtain good Nu 
correlation with experimental data for air when they forced their circulation 
wavelength to correspond to the experimentally measured wavelength ($Z.l), 
whereas much poorer correlation was obtained using a fixed numerical wave- 
length. We observe the same results when we use their wavelength measure- 
ments (figure 1) to determine the width of our variable mesh. 

Thus the calculated variable wavelength results in figure 2 have been shown to 
be in good agreement with experimental measurements for air for 

5 x 103 G ~a < z x 104. 

This is confirmed by the agreement with Mull & Reiher’s (1930) measurement 
a t  R a  = 9 x lo3 in figure 2 .  For larger values of Ra,  however, the situation is less 
clear. The fixed mesh turbulent calculations predict a N u  variation with R a  that 
departs rapidly from experiment for R a  > 4 x 104, showing that this assumption 
gives a poor approximation to reality for these values of Ra.  But a two- 
dimensional, variable wavelength approximation for the mean motion, coupled 
with the turbulence representation, cannot be expected to produce an accurate 
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FIGURE 2. Variation of steady-state Nusselt number with Rayleigh number. Experimental 
results: ---, drawn by the author from measurements in water by Rossby (1966) and 
Silveston (1958); A, measurements in air by Mull & Reiher (1930). Numerical results: 
-m-, square mesh; -0-, variable width mesh with turbulence; -0-, variable width 
mesh without turbulence; +, test of smaller width mesh. 

prediction of heat flux a t  these high Ra either. Three-dimensional effects, which 
Willis et al. (1971) and the present calculations show can be neglected to a good 
approximation for Ra < 2 x lo4 if the effect of wavelength variation with Ra is 
included, can no longer be ignored if Ra > 2 x lo4. At the smaller Ra, these three- 
dimensional motions consist of lateral migrations, sinuous oscillations and occa- 
sional bends in rolls that otherwise maintain their two-dimensional identity. As 
the Ba is increased, these three-dimensional mean motions become increasingly 
prevalent, so that a two-dimensional model (even with variable wavelength) 
should begin to diverge from experiment. 

Thus the high Ra calculations of this study are not expected to be in good 
quantitative agreement with experiment. However, as can be seen in figure 2 the 
correlation with experiment is much better than that of the fixed wavelength 
study, so it is of interest to see how much this correlation could be improved by 
a more rapid increase of wavelength with Ra. To test the sensitivity of N u  to 
calculation wavelength, we repeated the Ra = 6-4 x lo5 problem with a mesh of 
75 x 30 cells. The Nu measured in this calculation is shown by the diamond at 
Ra = 6.4 x lo5. Relative to the difference between the fixed and variable wave- 
length calculations, this point represents an 8 %  increase in N u  for a 25% 
decrease in wavelength. Thus, the heat flux is not a strong function of wave- 
length for wavelengths near those of figure 1, so that it is not likely that appreci- 
ably better correlation could be obtained by a further increase in wavelength. 

In  figure 2 the calculations that are constrained to be non-turbulent appear 
to be in better agreement with experiment than the turbulent calculations for 
Ra > 2 x lo4. The reason for this is that the neglect of turbulence leads to a 
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decrease in N u  that counteracts the increased heat flux inherent in the two- 
dimensional model a t  large Ra. The convergence to steady state was very slow 
in these non-turbulent calculations for Ra > 5 x lo4. In  the calculation a t  
Ra = 1.6 x lo5, this slow convergence appeared to be related to the periodic 
appearance and disappearance of two small counter-rotating eddies associated 
with the main circulation. A similar development in a non-turbulent calculation 
at Ra = 6.4 x lo5 resulted in the breakup of the original single circulation into 
three counter-rotating motions. 

4.2. Turbulence variations with Rayleigh number 
Transition to turbulence occurred for lo4 < Ra < 2 x lo4 in these calculations. 
Thus, an initial, low intensity turbulence field decayed away for Ra < 2 x lo4, 
but survived and contributed to an increase in heat flux for Ra 2 2 x lo4. The 
same transition was observed in the fixed and variable wavelength calculations. 

I n  comparing this transition Rayleigh number with that observed experi- 
mentally in air, it is important to distinguish between the ‘time-dependent’ 
motions that can be resolvedin these two-dimensional calculations and those that 
cannot. As discussed in § 2.2, it is not possible to resolve such three-dimensional 
motions as the migration, changes in shape and sinuous oscillations of the rolls. 
This would require a three-dimensional solution. The onset of turbulence in this 
numerical study does not, therefore, correspond to the first experimental evi- 
dence of unsteady motion. Instead, it should correspond to the first experimental 
occurrence of local fluctuations, not directly related to the large roll motions. 
The first local, uncorrelated motions reported by Willis & Deardorff (1970) are 
‘short length, isolated sharp-crested waves ’ that  maintain their identity for only 
a short period of time, and are observed for Ra > N 1.2 x lo4. These authors 
report that  turbulence is well established in air a t  R a  = 3 x lo4. Thus, to the 
extent that  these calculations can resolve time-dependent motions, the onset of 
turbulence is in good agreement with experiment. 

Figure 3 shows the variation of kinetic energy with Ra. The two solid lines in 
figure 3 (a )  show the turbulence energy and the total kinetic energy of the flow 
summed over the calculation region, while the hollow circles indicate the kinetic 
energy measured in calculations that were constrained to be non-turbulent. The 
dashed line gives the kinetic energy obtained from a half power law fit to the 
verticalIy averaged velocity magnitudes of Malkus ( 1954) and Deardorff & Willis 
(1967), presented by the latter authors. For comparison, the averaged experi- 
mental measurements have been weighted by the number of calculation cells 
appropriate for that Ra (see figure 1) .  As expected, the two-dimensional calcula- 
tions are more energetic than the real three-dimensional flows, and this 
discrepancy increases with Ra. 

Several discontinuities are apparent in the turbulence energy plot of figure 3 (a) .  
Corresponding breaks are also evident in figure 3 ( b ) ,  which compares the maxi- 
mum value of the three normal components of the Reynolds stress. These dis- 
continuities, which occur a t  approximately Ra = 5 x lo4, 2 x lo5 and 5 x lo5, are 
related to changes in slope of the heat flux curve to be discussed below. They 
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FIGURE 3. (a) Variation with Ra of the turbulence energy and the total kinetic energy 
with (-e-) and without (0) turbulence. - - - - - -  , fit to experimental data of Malkus, 
Deardorff and Willis. ( b )  Variation with Ra of the maximum value of the normal com- 
ponents of the Reynolds stress: e, RI1; A, Rzz;  ., R,. The straight lines through the 
turbulence data show discontinuities a t  approximately Ra =: 5 x lo4, 2 x lo5 and 5 x lo5. 

appear to be associated with the experimental heat flux transitions observed by 
Malkus ( 1954), Willis & Deardorff ( I  967) and Krishnamurti ( 1970 a,  b) .  

The turbulence energy increases rapidly with Ra, from less than 1 yo of the 
total kinetic energy a t  R a  = 2 x lo4 to 13.5 % a t  R a  = 6.4 x lo6. However, the 
composition of the energy shifts with increasing Ra,  as demonstrated by the 
increased importance of the I component, relative to the 2 and 3 components in 
figure 3 (b) .  There are two reasons for the increased relative importance of R,,. 

(i) The tendency for the peak value of R,, to occur where the scale s is large, 
and for the peaks of R,, and R,, to occur where s is small (i.e. statistically the 
1 component of the energy is concentrated in the larger eddies, and the 2 and 3 
components in the smaller eddies). For this reason, the transfer of energy from 
the 3 to the 1 direction, because of the w term in the pressure-velocity correlation 
(equation (3)),  is large, while the reverse transfer is small. 
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FIGURE 4. Steady-state results at  Ra = 3 x lo4, 1.06 x lo6, 3.2 x lo5 and 6.4 x lo6 (from left 
to right). The first row of plots show velocity vectors, the remainder are contour plots of 
temperature T; Reynolds stress components Ri j ;  decay rate D; scale 8 ;  and intensity 
function A. The contour intervals are powers of two. The powers are listed at the left in 
the order in which the plots appear. The + sign indicates a position where the variable 
assumes its maximum value. 
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(ii) The increased importance of mean flow shear, relative to buoyancy, as a 
driving force in high intensity ( f [  large) turbulence. 

These and other effects of changes in Ra are examined in figure 4. This figure 
shows the details of the calculated mean flow and turbulence field a t  steady state 
for Ru = 3 x lo4, 1-06 x lo5, 3-2 x lo5 and 6.4 x lo5. The first row of plots are 
velocity vectors, showing the mean flow circulation. These vectors originate a t  
mesh cell centres, so that one can determine their origin by sighting along a hori- 
zontal or vertical line of such centres. The magnitude of the flow velocity increases 
with Ra, while the form of the circulation remains that of a tilted, clockwise 
rotating roll a t  all Ra. A shear layer exists along the no-slip horizontal walls, but 
not along the free-slip vertical walls, which are planes of symmetry. 

The remaining plots in figure 4 are contour plots. I n  these, local maxima are 
indicated by a + sign and minimum contour lines are marked by asterisks. The 
contour interval is always a power of two, so that one may easily compare plots. 
The powers are listed in the first column in the order in which the plots appear. 
All of the plots in figure 4 were obtained directly from the computer calculation. 
The only additions are the + symbols. 

The temperature T field associated with the large circulation consists of a 
plume of warm air rising along the left side of the mesh and the returning cold 
air on the right side. Where the horizontal plates interrupt these vertical motions, 
large temperature gradients exist, their magnitudes increasing with Ra. The 
temperature contours assume a spiral configuration in the strong vorticity region 
between the plates. There is a tendency for the spiral to become tighter as Ra is 
increased, but this trend is reversed a t  large Ra, owing to the diffusive effect of 
turbulence. Indeed, it appears that  the turbulent diffusion of the temperature 
field provides the mechanism for limiting the wavelength of these circulating 
flows. This point is discussed in greater detail a t  the end of $4.2.  A vertical 
profile of horizontally averaged temperature shows a monotonic decrease of 
average temperature with height in these calculations, in agreement with experi- 
mental observations (Deardorff & Willis 1967). I n  contrast, the profiles obtained 
from fixed wavelength calculations show a slight temperature inversion near the 
edge of the boundary layer. 

The next three lines in figure 4 show the normal components of Rij. The 
horizontal component R,, receives its energy from shear creation near the hori- 
zontal walls, as well as from coupling among the components. This inter- 
component coupling provides the sole source of energy for Rz,; therefore its 
distribution reflects the relative magnitude of R,, and R,,. Concentrations of R,, 
are found in the upper left and lower right corners of the mesh where temperature 
and vertical velocity gradients are large, since this component is fed by buoyancy, 
as well as shear creation. 

At low Rayleigh numbers buoyancy effects dominate. This is demonstrated by 
the large magnitude of R,, relative to R,, and R,, (notice the contour intervals 
at Ra = 3 x lo4 in figure a), and by the fact that peak values of the latter quanti- 
ties occur near the R,, peak as a result of the transfer of energy from that com- 
ponent. At higher Ra, shear creation becomes a much more important source of 
turbulence, eventually exceeding the contribution from buoyancy. For 
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Ra > 3 x lo4, this is demonstrated by the increased magnitude of R,, relative 
to R,, (see also figure 3 ( b ) ) ,  the occurrence of the peak R,, a t  a point downstream 
(as a result of convection) of the region of large horizontal shear, and by the 
increased similarity of R,, to RII .  

The character of the turbulence changes sharply when the flow enters the high 
intensity regime (c  > 5 ) .  A consideration of the parameter values, (9) and (lo),  
together with ( 1 )  and (2),  shows that the rate of decay of D relative to that of Ri, 
is such as to produce a discontinuous decrease in D/q = A/s2 at c = 5 ,  neglecting 
all other contributions. This change in value of A/s2 has important consequences 
for many of the terms of (1)-(6). It produces more diffusion of the turbulence 
quantities and the temperature, less decay and intercomponent coupling, and 
less creation of D through shear effects (especially since g ( 5 )  also decreases a t  
( = 5 ) .  On the other hand, D creation through buoyancy is enhanced as a result 
of the increase in f(e) a t  ( = 5 .  Since any change in D, the turbulence energy 
decay rate, produces an opposite change in R,,, the net effect of this shift from 
low to high intensity turbulence is to emphasize the importance of shear relative 
to buoyancy in the creation of Rii and to reduce the decay of Rij relative to its 
creation. 

The effect of these changes is evident in figure 4, where the occurrence of high 
intensity turbulence is indicated by the A(6) plots. These plots show that the 
turbulence development in this buoyancy-driven flow evolves through three 
stages of intensity, the transitions of which seem to be associated with observed 
heat flux transitions ( 3  4.4). These stages are: (i) a low intensity regime, such as 
the flow a t  Ra = 3 x lo4, where A = 5 everywhere; (ii) a regime where the turbu- 
lence is of high intensity only where peak values of the turbulence energy are 
attained, such as for Ra = 1.06 x lo5; (iii) a high intensity regime throughout, as 
occurs at Ra = 3.2 x lo5 and Ra = 6.4 x lo5. The transition from regime (i) to 
regime (ii) occurs when the temperature gradients near the walls are sufficiently 
great to produce a very localized region of high intensity R,, creation. The transi- 
tion from regime (ii) to regime (iii) occurs when the strength of the shear layer 
near the walls is sufficiently great to produce high intensity R,, and R13 creation. 
Because of the increased relative importance of shear creation a t  high intensity, 
the turbulence energy increases very rapidly after this transition, and the entire 
flow field becomes of high intensity. 

The creation terms in the D equation closely resemble those of the R,, equa- 
tion, so there is a strong correlation between these two fields. However, D is 
strongly influenced by the boundary condition (8),  so that it is more closely 
confined to the rigid plates. This is particularly true for high intensity turbulence, 
where the D field is dominated by a balance between a greatly increased decay 
term (discussed above) and the diffusion of D through the rigid wall. The change 
in the distribution of D with Ra leads to a corresponding change in the scale s. 
The scale tends to be large where D is small and q is large. This corresponds to the 
mid-channel region and especially those parts of the mid-channel region where 
R,, is large. This accounts for the strong correlation in figure 4 between large 
values of s and large values of R,, for Ra 2 3.2 x 105. Thus, the large turbulent 
eddies have a strong x component of momentum, while the smaller eddies are 

10-2 
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confined closer to the wall and have a large z component of momentum. There is 
also a strong correlation between regions of strong turbulent shear stress R,, and 
large values of s, indicating that the large eddies are non-isotropic. The turbulent 
shear stress also receives a contribution from a buoyancy term proportional to 
aT/ax. This accounts for the extension of the R,, maxima along the sides of the 
mesh. 

The transition from the flow a t  Ra = 3.2 x lo5 to that a t  Ra = 6.4 x lo5 is 
characterized by enhanced shear creation and a more complete confinement of 
the strong D field to the near vicinity of the rigid walls. This results in a sharp 
increase in the turbulence energy, shear stress and scale, which effects, in turn, 
produce a greatly enhanced diffusion of the turbulence fields and the temperature. 
In  particular, the scale is much increased in those regions near the wall where R,, 
attains its peak value. This leads to considerable broadening of the R,, peak and 
increased transfer of heat through turbulence from the near wall region to the 
mid-channel region. 

The greatly increased turbulent diffusion that is apparent a t  Ra = 6-4 x 105 
has a limiting effect on the wavelength of the circulation. Thus, in figure 4,  the 
velocity vector plot a t  this Ra indicates a preferred circulation wavelength that 
is less than the wavelength permitted by the width of the computation mesh. 
This appears to be a consequence of the turbulent smoothing of the temperature 
field in the mid-channel region, particularly in the relatively uniform tempera- 
ture, central core region. This has the unusual (for a diffusion process) effect of 
increasing the temperature gradient, and thereby the buoyancy force, at the 
centre of the circulation. This adds a vertical acceleration to the velocity field a t  
a point closer to the centre of the circulation than would otherwise occur, and 
results in a shorter circulation wavelength. 

As a result of the shortened wavelength of the large-scale motions, the region 
of maximum sheer creation of Rij occurs closer to the horizontal centre of the 
mesh. Thus the peak values of all components of Rij (particularly .R3J are more 
centrally located at  Ra = 6.4 x l o 5  than a t  lower Ra in figure 4. 

4.3. Heat JEux transitions: comparison with experiment 

Experimentalists (Malkus 1954; Willis & Deardorff 1967; Krishnamurti 1970a, b )  
observe six distinct flow transitions in convective flow between rigid horizontal 
plates in the Rayleigh number range 1.7 x 103-l.0 x lo6. These transitions appear 
as discontinuities in otherwise linear segments of plots of Nu x Ra against Ra. 
While there is considerable discrepancy among experimenters (and even between 
different experiments in the same study) regarding the details of these slope dis- 
continuities, there is little doubt that they exist and exhibit a certain basic con- 
sistency for a wide variety of fluids. However, the physical processes that produce 
these transitions are not well understood, especially in the turbulent regime. The 
transition Rayleigh numbers measured by these investigators are listed in 
table 1, with the fluid Prandtl number indicated in parentheses. 

The first transition in table 1 corresponds to the onset of convective flow, and 
appears to be independent of Pr. There is an uncertainty in both the Rayleigh 
number and the interpretation of the second transition. Malkus reported that 
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Transition Malkus Willis & Deardorff Krishnamurti 

1 1 700 (6.7) 1 7 5 0  (0.71) - 

2 - 8 200and 24 000 (0.71) 4 000 (0.71) 
11 000-26 000 (6.7) 11 000-26 000 (6.7) 17 000 (6.7) 

- 21 000 (450) 17 000-22 000 (57-8500) 
3 - 56 000 (0.71) - 

55 000 (6.7) - 36 000 (6.7) 
- 54 000 (57) 51 000 (57) 
- - 56 000 (> 100) 

4 170 000 (6.7) 180 000 (0-71) 180 000 (100) 

5 425 000 (6.7) 410 000 (0-71) - 

6 860 000 (6.7) 830 000 (0.71) - 

TABLE 1.  Rayleigh number of experimental flow transitions 

the transition Ra varied in successive experimental runs, but that visual observa- 
tions established that the flow became turbulent within the indicatedrange of Ra. 
Krishnamurti showed that the lack of reproducibility is related to the history of 
the flow: transition occurs a t  a higher Ra if measurements are taken while 
increasing rather than decreasing Ra. However, she correlated this transition 
with the appearance of laminar, three-dimensional convection. I n  this she is 
supported by the findings of Willis et al. (1971), who related this transition to 
changes in the rate of growth of circulation wavelength with Ra, which they 
claimed also coincides with the appearance of laminar bimodal convection. 
These are the transitions a t  Prandtl numbers of 6.7 and 450 in table 1. In  the case 
of air, there is an additional correlation between a change in the rate of growth 
of the circulation wavelength a t  Ra = 8200 and Willis & Deardorff’s (1967) heat 
flux transition a t  the same Ra. These authors do not correlate the transition in 
air a t  Ra = 24 000 with any visua.1 observations; but in Willis & Deardorff (1970) 
it is indicated that turbulence is well established in air a t  Ra = 30 000. 

There is better agreement among the investigators regarding the higher 
Rayleigh number transitions, although Krishnamurti observed a greater varia- 
tion with Pr a t  the third transition. She correlated this transition with the 
appearance of a laminar time dependence characterized by a slow tilting of the 
rolls and the circulation of high-shear regions about the rolls. Malkus, on the 
other hand, identified transitions 3-6 as shifts from one mode of turbulence to 
another. 

I n  this numerical study we have observed transitions in heat flux that can be 
correlated with the experimental transitions 2-5 (transition 1 is at a Ra smaller 
than those considered here) of table 1.  These are shown in the plots of N u  x Ra 
against Ra of figures 5-7. As in the experimental studies, the data points have 
been fitted by a series of straight line segments, the intersections of which mark 
the transition points. These transition points are in good correlation with the 
changes in slope of the turbulent data shown in figure 2. I n  addition to the results 
obtained in the turbulent calculations, figures 5 and 6 also contain N u  x Ra 
values measured in the calculations that were constrained to be non-turbulent. 
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FIGURE 5. Plot of Nu x Ra against Ra, showing a discontinuity at Ra = 2.5 x lo4; 
-0-, calculations with turbulence ; ---0- --, calculations without turbulence. 

These non-turbulent data provide a basis for evaluating the role that turbulence 
plays in the heat flux transitions. They also provide a measure of the curvature 
that exists in the heat flux plots as a result of the two-dimensional constraint. 

The heat flux transition shown in figure 5 a t  Ra M 2.5 x lo4 is probably associ- 
ated with the onset of turbulence, which occurs a t  Ra = 2 x 104in these numerical 
calculations. However, this correlation is somewhat obscured by the fact that 
there also appears t o  be a transition in the non-turbulent measurements at this 
Ra in figure 5 .  We know of no explanation for this latter transition, and 
presume that this is not a real change in slope, but simply evidence of the 
positive curvature that exists in the N u x  Ra curve, resulting from the 
two-dimensionality of the calculation. If this is the case, then the uniform 
departure of the turbulent data points from the non-turbulent ones in figure 5 
does mark a true slope transition a t  Ra x 2-5 x lo4. This point is in good 
agreement with Willis & Deardorff’s transition measured in air a t  Ra = 2.4 x lo5, 
and with the observed Ra for transition 2 (see table 1) measured for other fluids. 
Willis & Deardorff’s transition for air a t  Ra = 8200, and Krishnamurti’s at  
Ra = 4000, are apparently related to three-dimensional but non-turbulent 
phenomena that we cannot duplicate. 

Figure 6 shows the second transition observed in this study, occurring in the 
range 5 x lo4 < R a  < 8 x 104. I n  this case there can be no confusion regarding 
the role that turbulence plays in the transition, since the non-turbulent results 
show no tendency toward a heat flux transition for these Ra. An attempt to 
determine this transition more precisely by performing a calculation at  
Ra = 6.5 x lo4 was not successful, because the initial large circulation broke up 
into three narrow, oppositely rotating circulations at this Ra. This was the only 
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FIQURE 6. Plot of N u x R a  against Ra, showing a discontinuity at approximately 
Ra = 6 x lo4; -0-, calculations with turbulence; 0, calculations without turbulence. 

instance in which this phenomenon was observed in the turbulent calculations 
(although a similar breakup into three counter-rotating rolls occurred in the non- 
turbulent calculation a t  Ra = 6.4 x 105). The resulting circulation wavelength, 
Q the plate separation distance, may correspond to a preferred two-dimensional 
calculation wavelength. In  a study a t  lower Rayleigh numbers, Lipps & 
Somerville (1971) report a calculation wavelength less than twice the plate 
separation when the mesh width was large compared with the wavelength. 

The experimental transition number 3 a t  Ra = 5.6 x lo4, Pr = 0.71 (table 1) 
falls within the calculated transition range in figure 6. Similar good agreement is 
found between experimental transition number 4 and the calculated transition 
a t  1.6 x lo5 < Ra < 2.3 x 105 in figure 7. There also appears to be a correlation 
between experimental transition number 5 and a calculated transition between 
Ra = 4.1 x 105 and Ra = 6.4 x 105. There is not sufficient data to determine 
definitely the N u  x Ra slope for these values of Ra in figure 7, although an 
extension of the linear segment fitting the data for Ra < 4.1 x lo5 falls consider- 
ably below the Ra = 6.4 x 105 point. However, more evidence for a turbulence 
transition in this range of Ra is given by the changes in the details of the flow 
field, as discussed above in relation to figure 4, as well as changes in the relative 
contribution of conduction, convection and turbulent diffusion to the heat flux, 
to be considered below. 
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FIGURE 7. Plot of N u x R a  against Ra, showing a discontinuity a t  approximately 
Ra = 2 x lo6 and a possible discontinuity between Ra = 4.1 x lo5 and Ra = 6.4 x lo6. 

4.4. Correlation between changes in turbulent structure and 
heat jlux transitions 

To understand the physical processes that give rise to the heat flux transitions 
seen in figures 5-7, i t  is useful to examine in greater detail the phenomena that 
contribute to the heat flux. The Nusselt number a t  any height x is given by 

0- 7 
convection conduction turbulent dflusion 

Here L = l/h is the dimensionless width of the calculation mesh. 
Although N u  is constant in z, the relative importance of t'he contributors to N u  

varies considerably with distance from the plates. In  figure 8 we show profiles of 
the horizontally averaged convection, conduction and turbulent diffusion of heat 
for each of the Rayleigh numbers considered in figure 4 as well as for Ra = lo4. 
These values of R a  were chosen to typify each of the regimes of flow that corre- 
spond to the linear segments of the heat flux curve in figures 5-7. We shall make 
use of these profiles, together with the details of the turbulence fields shown in 
figure 4, to understand the unifying features of each of these flow regimes, and 
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FIGURE 8. Contributions t o  the heat flux between the plates at various Ra. The curves 
show profiles of horizontally averaged convection, (-), conduction, (- -), diffusion 
by turbulent normal stress (---), diffusion by turbulent shear stress (----). Ra: 
(a) lo4; (b) 3 x lo4; (c) 1.06 x lo5; (d )  3.2 x lo5; (e) 6.4 x lo6. 

in this way to explain the changes in flow structure that produce the heat flux 
transition. 

Before considering these transitions in detail, it  may be useful to consider the 
trends indicated in figure 8. The heat flux in the central region between the plates 
( z  = 0-5) is dominated a t  all Ra by convection, while conduction is the principal 
heat transport mechanism near the plates. As Ra increases, the strong convective 
effect of the large-scale circulation produces greater temperature gradients near 
the wall, so that the region of important heat conduction is confined more closely 
to the wall. The heat flux in an ever-expanding region between the plates is 
dominated by convection and, for sufficiently large Ra, turbulent diffusion. To 
express this trend in a quantitative way, we show in figure 9 the variation with 
Ra of the value of z where: (i) the convection profile (figure 8) falls to 98 yo of its 
maximum, (ii) the conduction profile attains 10 % of the value in the calculation 
cell nearest the wall, and (iii) the R,, turbulent diffusion profile reaches 10 yo of 
its maximum on the mid-channel side. Consistent with the phenomenon dis- 
cussed above, the 10 yo maximum conduction curve in figure 9 shows a monotonic 
decrease in z as Ra increases. The 98 yo maximum convection curve displays an 
initial decrease in z ,  consistent with the broadening seen in figure 8 between 
Ra = lo4 and Ra = 1.06 x lo5, followed by a reversal in trend a t  Ra M 2 x 105 
where turbulence begins to exert a much stronger influence on heat flux. The 
I 0  % maximum turbulent diffusion curve is stationary in z for Ra 2 2 x 105, but 
then increases rapidly as the turbulence enters the high intensity regime. 

The heat flux transition that occurs between the flow regimes a t  Ra = 104 and 
Ra = 3 x lo4 (figure 8) is easy enough to explain: it corresponds to the onset of 



154 B. J .  Daly 

A 

\ 
.. 

I I I I I 1 1 1 1  1 I I I 1 1 1 1 1  I 
J 0 4  J 0 5  1 O6 

Ra 
FIGURE 9. A qualitative indication of the variation with Ra of the shape of the profiles of 
figure 8. The data points mark the value of z where: the convection profile falls to 98 yo 
of its maximum (0 ), the conduction profile attains 10 yo of the value in the calculation cell 
nearest the wall (i.e. at z = 0.0167) (A), the normal stress turbulent diffusion profile 
reaches 10 Yo of its maximum (m). 

turbulence at Ra = 2 x lo4. What we should examine in detail, however, is the 
mechanics by which the details of the turbulence structure influence the change 
in heat flux a t  this Ra. We see from (19) that the turbulent flux of temperature is 
given by -7s2/AR3,aT/az. (The contribution to heat flux by the turbulent 
shear stress R,, is insignificant for Ra < 1.06 x 105.) At this low intensity turbu- 
lent regime A = 5 (constant), while 7 is always constant, so the heat flux depends 
on the scale of turbulence (squared), the normal component of the turbulence 
energy and the normal gradient of the temperature. Thus, from a laboratory 
standpoint, turbulent heat diffusion corresponds to the convection of tempera- 
ture from e.g. a warm region to a cool region by a turbulent eddy of size s, moving 
with velocity (R3,)4. 

At Ra = 3 x lo4, R,, is concentrated in a narrow region near the rigid plates 
(figure 4), and the scale of turbulence is small: of the order of the microscale. 
Therefore, the diffusional power of the turbulence is not large and only a modest 
transport of heat from the near wall (i.e. outside the laminar sublayer) region to 
the mid-channel region occurs. The result is a slight increase in heat flux owing to 
increased temperature gradients in the laminar sublayer, as well as more heat 
available for convection by the large-scale circulation. Thus, the contribution 
from heat conduction is increased (figure 8) ,  but confined more closely to the wall 
(figure 9), while the effect of heat convection occupies a larger part of the 
mid-channel. 

The heat flux transition that occurs between the flow regimes at  Ra = 3 x lo4 
and Ra = 1-06 x lo5 has a more subtle explanation than the previous one. The 
turbulent structure is not much different a t  the two Rayleigh numbers: R,, is 
still concentrated very close to the plates, and the scale remains small. The 
primary difference is that the turbulence has entered the high intensity regime 
in some regions of the flow a t  Ra = 1.06 x lo5 (notice the A(() plot in figure 4), 
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and particularly in a small region where the peak value of B,, occurs. As discussed 
in s4.2, the transition from low to high intensity turbulence results in an 
increase in turbulent diffusion. The effect of this can be seen in figure 4 as a slight 
broadening of the R,, peak in that region where the turbulence has become of high 
intensity (see A(<) plot). Another effect of the transition to high intensity turbu- 
lence has been the more rapid growth of R,,, which results in a reduced transfer 
of energy from R,, to R,, by inter-component coupling (3). All of these effects 
combine to increase R,,, as well as the diffusion of heat into the region between 
the plates. Thus a relatively small change in the turbulence structure has pro- 
duce a noticeable transition in heat flux between the plates. 

The change in turbulence structure between Ra = 1.06 x lo5 and Ra = 3-2 x lo5 
is major. It results from the development of a mean flow shear layer strong 
enough to produce high intensity creation of R,, and R,, ( $ 4.2). Because of the 
increased relative importance of shear creation a t  high intensity ( 9 3.5), the high 
intensity region spreads very rapidly following this development and soon 
encompasses the entire flow. This transition produces a sharp increase in turbu- 
lent diffusion, the results of which are evident in figure 4 by the widened peaks 
of all of the R,, components a t  Ra = 3.2 x lo4 andin figures 8 and 9 by the greatly 
increased magnitude and extent of the turbulent diffusion of heat. Owing to the 
increased diffusion of R,,, the effect of turbulent heat diffusion is felt closer to the 
wall, so the region of important heat conduction is quite narrow in figure 8. 
Likewise, heat is diffused further into the mid-channel region by turbulence, so 
the strong effect of convection is not felt so close to the walls. 

The heat flux transition that appears to occur between Ra = 4.1 x lo5 and 
6.4 x lo5 (figure 7)  can be correlated with an important increase in the shear 
creation of turbulence a t  Ra = 6.4 x los. As mentioned above, shear creation 
increases more rapidly with Ra than buoyancy creation in high intensity turbu- 
lence, so that by Ra = 6-4 x lo5 the magnitude of RI1, which is created through 
shear, is larger than that of R,, and the turbulent shear stress, R1,, is sufficiently 
large to contribute noticeably to the heat flux between the plates. But the more 
important effect is that the turbulence energy level is increased considerably at 
Ra = 6.4 x lo5 (figure 3 ( a ) ) ,  and this produces a larger turbulence intensity. 
The scale of turbulence in the region of peak R,, is now much larger than a t  
Ra = 3.2 x lo5 (figure 4)) so that turbulent heat diffusion is greatly enhanced. 
Although the measurements a t  Ra = 6.4 x lo5 are probably less accurate than 
those a t  smaller Ra (because of residual fluctuations: see appendix A), it is very 
unlikely that the results mentioned above would be seriously modified by 
improvements in the accuracy of solution. 

The results of $4.4  are summarized in table 2 ,  which gives the Rayleigh 
number and explanation of each of the heat flux transitions observed in this 
study. The transitions are numbered to correspond to the experimental heat flux 
transitions of table 1. 
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Transition Rayleigh number Explanation 

2 Onset of low intensity turbulence 
3 5 x 104-8 x 1 0 4  Locally high intensity turbulence 
4 1.6 x 106-2*3 x 10' Uniformly high intensity turbulence 
5 

i x 104-2 x 104 

4.1 x 105-6.4 x 105 Increased intensity, strong shear creation 

TABLE 2. Calculated flow transitions 

4.5. Additionai comparisons with experiment 

Figures 10 (a)-(c) show comparisons of vertical profiles of horizontally averaged 
transverse and vertical components of kinetic energy and mean temperature, 
respectively, between results of calculations at R a  = 6.4 x lo5 and experimental 
measurements in air by Deardorff & Willis (1967) a t  Ra = 6.3 x lo5. The calcu- 
lated transverse kinetic energy was obtained by averaging the x and y 
contributions: 

while KE, = &(u: + R33). 

Results are shown in figure 10 for calculations that employed a 90 x 30 cell finite- 
difference mesh (h/h = 6 in figure 1) and a 75 x 30 cell mesh (A/h = 5), to show 
the sensitivity of these profiles to changes in wavelength. 

The experimental transverse kinetic energy in figure lO(u) shows a moderate 
increase from the mid-plate region toward the wall. The calculated profiles, on 
the other hand, start from smaller values a t  mid-channel, but increase much 
more rapidly toward the plates. This discrepancy is partly real, attributable to 
neglected three-dimensional effects in the numerical study, and partly related 
to measuring differences. In  the experimental study, the large-scale eddies 
(h/h > 5 ,  according to Deardorff & Willis) have no preferred orientation relative 
to the horizontally moving sampling probe. Thus, the measured horizontal com- 
ponent of the fluctuating velocity would not in general be the maximum hori- 
zontal component, as i t  is in the two-dimensional numerical calculation. Hence 
the experimental measurements exhibit a velocity deficiency that, upon squaring, 
becomes a larger energy discrepancy in figure 10 (a) .  

No such difficulties exist regarding the data of figure 10 ( b ) ,  since the experi- 
mental measurements were made in a direction normal to this component. How- 
ever, there is a different inconsistency in this case. The calculated energy level is 
less than the experimental value in all but a small region near the wall, which 
seems inconsistent with the larger calculated heat flux in figure 2 .  The explana- 
tion must be that the two-dimensional large-scale motions, which account for 
most of the calculated heat flux (figure 8), provide a more efficient heat-transfer 
mechanism than the real three-dimensional eddies. 

The temperature profiles in figure 10 ( c )  show good correlation between calcula- 
tion and experiment near the wall and mid-channel regions, but the calculations 
exhibit a rounder shoulder than the experiment. This results from the strong, 
two-dimensional convection produced in the calculations, which tends to reduce 
temperature gradients at  the edge of the boundary layer. 

KE,  = i(?4 +El1 + Rzz), 

' 
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FIGURE 10. (a )  Comparison of the horizontally averaged transverse component of kinetic 
energy as measured in numerical calculations a t  Ra = 6.4 x lo5 and in experiments by 
Deardorff & Willis (1967) a t  Ra = 6.3 x lo5. -, calculation with 90 x 30 mesh; - - -, 
calculation with 75 x 30 mesh; - - -, experiment. ( 6 )  Vertical component of kinetic 
energy; otherwise same as (a).  (c) Mean temperature profiles; otherwise same as (a).  

5. Conclusion 
This study is one of a series that have been undertaken for the purpose of 

developing a universal transport representation of turbulence. The purpose of 
the present investigation was to examine the validity and applicability of (1)  and 
(2) for calculating the transition from laminar to turbulent flow. A second goal 
was to examine the flow a t  higher Rayleigh numbers, to determine if one could 
observe and explain a series of heat flux transitions that have been detected 
experimentally. 

These calculations are certainly not without their constraints. The most 
important of these is the inability, owing t o  computer limitations, to include the 
effects of three-dimensional variations (the turbulence transport equations do 
describe fully three-dimensional turbulence) in the flow. Computer limitations 
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also preclude a more detailed spatial resolution of the flow (the sensitivity of 
results to this parameter is examined in appendix A), as well as a more intensive 
study of the variation with Rayleigh number. Another inhibiting factor has been 
the paucity of experimental data that one can use in developing a realistic model 
of the transition from low to high intensity turbulence. In  view of these diE- 
culties, we expect to be able to show only qualitative trends regarding the rela- 
tionship between heat flux transitions and changes in turbulent structure, 
although the reasonable agreement with experiment seen in figures 2 and 10 
(except for figure 10 (a), for which the discrepancy is thought to be understood: 
see 3 4.5) encourages a belief in the validity of these correlations. 

The calculations predict a transition to turbulence in the range. 

lo4 < Ra < 2 x 104, 

in good correlation with experimental observations (Willis & Deardorff 1970) of 
the onset of widespread turbulent fluctuations in air. At higher Ra, additional 
transitions have been observed, and these agree in number and Ra with the heat 
flux transitions observed experimentally. In  the calculations these appear, not 
only as changes in slope of linear segments of Ra x Nu plotted against Ra, but 
also as discontinuities in log-log plots of the variation with Ra of the total turbu- 
lence energy and the maximum of each component of the turbulence energy. 

Four turbulence transitions have been detected in the calculations (table 2), 
and each of these has been found to correspond to a change in the calculated 
turbulent structure. These four structural classes can be described as: (i) an 
initial, low intensity turbulence; (ii) a low intensity turbulent field with local 
regions of high intensity; (iii) uniformly high intensity turbulence; (iv) increased 
intensity through strong shear creation. The transfer from one structural class 
to another is shown to be accompanied by changes in the relative contribution of 
conduction, convection and turbulent diffusion to the heat transfer between the 
plates. Thus we can correlate changes in the turbulent ffow structure with 
changes in the heat flux mechanism, and these in turn can be related to the 
observed heat flux transitions. The good correlation between calculated and 
experimental heat A ux transitions encourages one to believe that the calcula- 
tional limitations mentioned above do not preclude a similar explanation for the 
heat flux transitions that are observed in the laboratory. 

This work was performed under the auspices of the United States Atomic 
Energy Commission, and was partly supported by the Office of Naval Research, 
Government Order NAonr-2-73. The author would like to thank Dr F. H. Harlow 
for his continuing interest in this study and many helpful discussions. 

Appendix A. Details of the numerical calculations 
Despite the title of this appendix we do not present here detailed finite-differ- 

ence formulae or solution algorithms for (1)-(6), since the numerical methods 
employed in this study are straightforward extensions of previously documented 
procedures. For additional information on these points, the reader is referred to 
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Daly & Harlow (1970) and Amsden & Harlow (1970a, b) .  I n  this section we con- 
sider the form of the initial conditions for the calculations, the test for conver- 
gence to steady state, the stability and accuracy of the solution technique and 
the time scale of the calculations. All are important questions that bear on the 
practicality and the scope of the study. 

The starting conditions were chosen in such a way as to hasten convergence to 
steady state and to avoid initial, large oscillations of the turbulence quantities. 
The initial velocity field was patterned after Chandrasekhar's (1961, p. 44) result 
for infinitely long rolls, while the temperature varied linearly in the region 
between the plates. The turbulence quantities were chosen to be symmetric about 
the mid-line z = 0-5 and constant in x, such that 

R,,(z) = 4 R a ( ) z - z W I ) f x  loF5, 

R,, = 0.0, 

O.8Iz-zwl for Iz-zz,I 6 0.25, 

for ( Z - Z , ~  > 0.25, 
s(z) = 

where z, is the value of z a t  a wall. The initial D is calculated from D = Aq/s2. 
These starting conditions were found to produce a smooth development of the 
turbulence fields. 

Not all of the problems were initiated in this way. I n  some fixed wavelength 
calculations a purely laminar flow problem was calculated first, then a turbulence 
field like the above was introduced and the problem was allowed to evolve to 
a new steady state. Also, steady-state turbulent solutions a t  other Rayleigh 
numbers were sometimes used as starting conditions to  hasten convergence. I n  
several cases, problems were initiated in more than one way t o  test the sensitivity 
of results to initial conditions. It was found that, to within the convergence 
criterion, the steady-state results were independent of starting conditions. 

The convergence criterion for both laminar and turbulent flow calculations is 
based on the constancy of the Nusselt number 

az A a x -  

The average value of this number over a row of calculation cells was computed 
each time cycle for a row near the wall and another a t  mid-channel. These 
Nusselt numbers oscillated with a rather uniform frequency and an amplitude 
that was damped with time. The calculation was said to have reached a steady 
state when 

(Nu)"+, - (Nu)" 
< 0.01 St,  

+((Nu)"+l+ (Nu)") 1 max [ 
where St is the time increment and (Nu)" is an average Nu a t  time cycle n. This 
criterion was satisfied for all square mesh turbulent flow calculations, but some 
long-wavelength problems were terminated early, to save computer time. 

Statistics for the variable field length calculations are presented in table 3. 
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Ra 

5 x  108 
1 x 104 
2 x 104 

4 x 1 0 4  
5~ 104 

3 x  104 

8 x  lo4  
1.6 x lo6 
6.4 x lo6 

2 x 1 0 4  
3~ 104 
4 x  l o4  
5 x  l o4  
8 x l o4  

1.06 x l o6  
1.6 x 105 

3-2 x 105 

6.4 x 105 

2-3 x lo6 

4.1 x lo6  

Cells 

1320 
1 620 
1 740 
1800 
1890 
1950 
2 070 
2 250 
2 700 

1 740 
1800 
1890 
1950 
2 070 
2 130 

2 250 

2 340 
2 430 
2 520 
2 700 

Time of Cycles 
calculation of 

at (min) calculation 

Non-turbulent calculations 

2.5 x 1 0 4  5.4 3 182 
2.5 x 10-4 6.7 3 254 
2.5 x 10-4 8.0 3 542 
2.5 x 1 0 4  10.3 3 928 
2.5 x 10-4 12.7 4 162 
2.5 x lo-" 15.5 4 390 
2.0 x 10-4 59.0 15596 
1.0 x 10-4 59-0 6 189 
2.0 x 10-5 39.3 3 010 

Turbulent calculations 

2.5 x 1 0 4  42.5 2 723 
2.5 x 10-4 52.4 2 986 
2.5 x 10-4 55.3 2 854 
2.5 x 10-4 56.3 2 776 
2.0 x 10-4 53.1 2 560 
1.0 x 10-4 89.6 4 242 
1.0 x 10-4 

4 866 ( 5 - 0  x lo-&} loo'l 
5.0 x 119.7 5 806 
3.0 x 119.7 5 745 
3.0 x 119.7 5 370 
1.0 x 119.7t 5 290 

0.01 
0.01 
0.01 
0.01 
0.01 
0.01 
0.28 
2-20 

11.6 

0.01 
0.01 
0.01 
0.01 
0.01 
0.14 

0.01 

0.02 
0.04 
0.07 
0.44 

Time/ 
cell/ 
cycle 
(PS) 

77 
76 
78 
87 
97 

109 
110 
254 
290 

538 
585 
615 
624 
601 
595 

549 

529 
514 
531 
503 

t Calculation started from a previous solution. 

TABLE 3 

The first group of problems are non-turbulent calculations; the remainder include 
turbulence effects. All calculations were started from the initial conditions given 
above, except for the final one a t  Ra = 6.4 x lo5, which was started from a solu- 
tion obtained with different parameter values. The calculations made use of a 
30-cell high, but variable width, finite-difference grid (see figure l), and employed 
a time increment that was approximately the maximum value consistent with 
numerical stability. The computation times on the CDC-7600 varied from 5.4min 
to 2 h, which was an arbitrary upper limit. Turbulence added measurably to the 
computation time, as can be seen by comparing the calculation times/cell/time 
cycle in the final column of the table. However, the total computation time with 
turbulence is not increased proportionately, since the number of calculation 
cycles required to satisfy the convergence required (20) is decreased when turbu- 
lence is added. Apparently, the diffusional effect of turbulence leads to a more 
rapid approach to heat flux stabilization. 

For problems that reached steady state, the smallest value of the convergence 
test number &Nu/&t is 0.01, by (20). A larger value of this term in table 3 indicates 
residual fluctuations at problem completion time. Consider the turbulent calcula- 
tions first. Except for the Ra = 1.06 x lo5 problem, which was terminated after 
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I+ h rather than the usual 2 h, these residuals show an increase with Ra, indicating 
a greater time required for convergence as the driving force and the mesh size 
increase. However, for the calculations a t  Ra < 6.4 x lo5, i t  is probable that no 
noticeable change in measurement would be observed if these calculations had 
converged. The residual fluctuations in the maxima of the Reynolds stress 
components are less than 1 % in these problems. The Ra = 6.4 x lo5 calculation, 
on the other hand, exhibited fluctuations of approximately I0 yo a t  the time it 
was terminated. Therefore the measurements at this Ra are likely to be less 
accurate than those at  smaller Ra. 

The non-turbulent calculations exhibit a much larger variation in the con- 
vergence test number than do the turbulent calculations. The convergence 
criterion is satisfied in all problems for which Ra < 5 x lo4, but large errors 
persist a t  problem completion time (for which the upper limit is I h in the non- 
turbulent calculations) a t  larger Ra. At Ra = 8 x lo4 and 1.6 x lo5 these errors 
are associated with rather uniform amplitude, time-periodic fluctuations in N u ,  
which may be associated with the tendency to develop secondary, counter- 
rotating vortices. These secondary vortices are detectable in the calculation at 
R a  = 1-6 x 105.  In  the calculation a t  Ra = 6.4 x 105, a similar phenomenon 
occurred; but in this case the amplitude of the secondary vortices eventually 
matched that of the primary circulation, so that the initial single roll broke into 
three counter-rotating circulations. 

The computational limitations imposed on this study by stability and accuracy 
requirements can best be seen by an examination of the truncation errors of (5).  
Hirt (1968) and Daly & Pracht (1968) have shown that the finite-difference 
procedure contributes truncation errors of the form 

to the right-hand side of the x component of this equation. These errors have 
the form of diffusion terms with coefficients that may be positive or negative, 
depending upon the size and magnitude of the velocity gradients. However, in 
these calculations the gradients are sufficiently small that the spatial truncation 
errors contribute much less than the 6t errors. 

These St errors always contribute to the negative diffusion of ul, and unless 6t 
is chosen sufficiently small that the errors are overshadowed by the true physical 
cliffusion terms 

an exponentially growing numerical instability will result. This is the condition 
that forced the reduced time increments in the high Rayleigh number calcula- 
tions. But while this constraint is sufficient to ensure the stability of the calcula- 
tions, the truncation errors nevertheless remain large and contribute to  a loss of 
accuracy. This is believed to explain the slow convergence in the high Rayleigh 
number problems (a particular difficulty in high Ra, laminar flow calculations, 
where molecular viscosity and heat conduction provide the only physical dif- 

I1 F L M  64 
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fusion). It would be interesting to repeat these calculations, including terms in 
the mean flow finite-difference equations that would explicitly compensate for 
the truncation errors, to examine the effect of these inaccuracies on the calculated 
flow structure and the rate of convergence to steady state. 

The stability restriction for the low Rayleigh number calculations is given by 

= 3.97 x 10-4 
6x2 622 

2 Pr (8x2 + 8.9) 
st < 

for these calculations. Violation of this condition leads to an oscillating, expo- 
nentially growing instability (Hirt 1968). Note that the St limit varies inversely 
with Pr. Thus calculations with a Pr appropriate to water (6-8), rather than air 
(0.7)) would require an order-of-magnitude increase in computer time. It is for 
this reason that the present study was confined to a single, low Pr application, 
even though more extensive experimental data are available for water. 

The Ra = 2.3 x lo5 calculation was repeated with a coarser finite-difference 
mesh, to test the sensitivity of results to spatial resolution. The original mesh of 
78 x 30 cells was reduced by Q in each direction so that the number of calculation 
cells was 4 of the number used in the fine-mesh study. Using the same time 
increment as in the original problem (St = 5 x lO-5), this calculation required 
37.4 min and 3997 computation cycles to reach steady state. The computation 
time/cell/cycle was 54Ops, which is slightly greater than the time required in the 
fine-mesh problem (table 3). The appearance of the mean flow and turbulence 
fields is little changed by the change in resolution, but the magnitudes of the 
turbulence fields shows about a 20 % shift away from shear generated turbulence 
toward buoyancy generated turbulence in the crude-mesh problem. The total 
turbulence energy was approximately 30 yo lower than the better resolved 
problem, while the mean flow energy was 3 Yo higher and the total kinetic energy 
was essentially unchanged. The Nusselt number was reduced by 4 yo. I n  view of 
the large change in mesh size, these variations do not indicate a strong sensitivity 
of results to finite-difference resolution. 

Appendix B. Sensitivity of results to variations of parameters 
I n  Harlow & Romero (1969) and Daly & Harlow (1970), the sensitivity of 

results to variations in many of the parameters of (I)-( 3) was examined. Because 
of the large computation time involved, it is not practical to re-examine all o'f 
the effects in the present study, so we limit our attention to the newly introduced 
parameters, 7, f(5) and !2. The effect of these terms is studied by varying their 
values from those given in 6 3.5 in recalculations of the Ra = 1.6 x lo5 problem. 
The computations do not reach steady state, but are carried sufficiently far that 
any residual fluctuations in measured values are likely to be small compared 
with the variation of the calculated results from the original Ra = 1-6 x 105 
steady state. 

At Ra = 1.6 x lo5 the flow is in the intermediate regime between low and 
high intensity turbulence (see 34.2). I n  this regime the turbulence is high 
intensity only in those parts of the flow where the peak values of the turbulence 



Turbulence transitions in convective flow 163 

Parameter 
variation 

none 
fC6) = 2-04, 5 2 5 
dt) = 0.96, t 3 5 

7 = 0.88 
7 = 0.72 
R = 0.24 

Mean 
flow 

energy 
x 10” 

9-83 
10.01 
9.90 
8.48 
9.63 
9-87 

Turbu- 
lent 

energy Nusaelt 
X ~ O - ~  number 

6.69 5.43 
4.21 5.17 
5.47 5.28 

19.60 6-56 
2.66 4.73 
6.51 5.42 

TABLE 4 

D m s x  

R11,max %,rnax x lo-’ 
606 1204 4.79 
444 910 3.56 
517 1078 4.04 

1156 1789 8-87 
317 842 3.35 
579 1193 4.72 

energy are attained. Small changes in the turbulence parameters could be 
expected to convert the flow to either the low or high intensity regime. There- 
fore, calculations a t  this Ra provide a severe test of sensitivity to parameter 
variations. 

This was particularly noticeable in the test off(<), the buoyancy creation 
coefficient in the D equation. I n  this test, the high intensity value of f ( 5 )  was 
increased 20 yo, from 1.7 to 2.04, while the low intensity value was unchanged 
a t  1.0. This change resulted in increased creation of D in regions of large tempera- 
ture gradient. The increased decay level was sufficient to change the flow in those 
regions from high to low intensity turbulence. High intensity turbulence did 
persist in some local regions of the mesh where shear creation dominated, but 
these regions were diminished in size as a result of increased decay. Thus the 
effect of the 20 % increase in the high intensity value off(&) was to convert a 
locally high intensity turbulent flow to one that was amost entirely low intensity. 
Since low intensity turbulence is much less diffusive than high intensity ( 5  4.2), 
the effect of this change was to confine the turbulence more closely to the wall 
regions and to reduce its contribution to the heat flux. 

A quantitative indication of the effect of this change in f(5) can be obtained 
from table 4. The first row in this table gives the values of some measured 
quantities from steady-state results at R a  = 1-6 x lo5, using the parameter 
values listed in 3 3.5. The second row gives the values obtained when f (&)  = 2.04 
a t  high intensity. The principal effect of this change has been to reduce the total 
turbulence energy as a result of the shift from locally high to almost entirely 
low intensity turbulence. Roughly the same percentage reduction is seen for the 
D maximum as for the R,, maxima, despite the fact that the D creation 
coefficient a t  high intensity was increased. The reason is that, because of the 
shift to low intensity, that coefficient has no effect except to preserve low 
intensity conditions. The Nusselt number has been decreased about 5 yo by this 
change, demonstrating the decreased turbulent diffusion of temperature at low 
intensity. 

For comparison with this test of the buoyancy creation coefficient, we have 
also calculated a problem in which the high intensity value of the shear creation 
coefficient in the D equation g(<) was increased 20 %. The trend is very similar 

11-2 
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to that observed in the f(6) test, but the tendency toward low intensity is not as 
complete in this case. High intensity conditions are maintained in the regions of 
peak R,, and R,, creation. The decreased severity of this change, as compared 
with that off ( f ) ,  is evidenced by the measured data in the third row of table 4. 

The T term, which we examine next, arises in the flux approximation for 
velocity-temperature correlations. It appears as a coefficient of the buoyancy 
creation term in the Rii equation and as a turbulent diffusion coefficient in the 
temperature equation. Because of this double effect, the results are very sensitive 
to variations in T.  To examine this sensitivity in some detail, we have performed 
two calculations, one with 7 increased by 10 yo and one with r decreased by 10 yo. 

When T is increased by lo%,  from 0.80 to 0.88, there is greatly enhanced 
buoyancy creation of Rii. This results, not only from the increased buoyancy 
creation coefficient, but also from the increased temperature diffusion, which 
permits buoyancy creation far out into the region between the plates. As a result 
of this change, the flow becomes high intensity throughout the entire region, and 
this also increases the strength of the turbulent diffusion. The temperature 
gradients become very uniform in the region between the plates and this produces 
the reduced circulation wavelength phenomenon observed in the turbulent calcu- 
lation a t  Ra = 6.4 x lo5 (see $4.2). The result is that peak values of Rii occur 
much closer to the centre of the circulation than in the original calculation at  

A decrease by 10 % in the value of 7 has an effect much like that of increasing 
f(6). The turbulent flow becomes low intensity except in local regions of strong 
shear creation. The temperature field, largely unaffected by turbulent diffusion, 
exhibits sharp gradients close to the wall, and a broad uniform value near the 
centre of circulation. This produces an appreciable decrease in heat flux, as can 
be seen in table 4. However, the heat flux provides a much less sensitive measure- 
ment of the effect of variations in T on changes in turbulent structure than do 
some of the other quantities in table 4. The total turbulence energy, for example, 
shows approximately a factor of 3 variation for a 10% change (increase or 
decrease) in 7, indicating the extreme importance of this parameter. 

In  contrast to this extreme sensitivity of results to variations in 7, the effect of 
a 20 % increase in the value of i2 is minimal. The effect on the mean flow energy 
and Nusselt number, as can be seen in table 4, is considerably less than 1 yo. 
Even the turbulence structure is largely uninfluenced by this change, although 
there is a detectable shift in magnitude from the 1 to the 3 direction. There is also 
a slight decrease in total turbulence energy. Both of these effects are predictable, 
since the increase in i2 increases the importance of au,/az creation of R,, and 
decreases that effect for R,, and R13. Since R,, appears as a coefficient in the 
SL term (3) for R,, and R,,, the net effect is a decrease in both of these terms. 

RU = 1.6 x 105. 
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